

IHTC15-8645

A NEW FLOW PATTERN BASED GENERAL CORRELATION FOR HEAT TRANSFER DURING CONDENSATION IN HORIZONTAL TUBES

Mirza M. Shah^{1*}

Engineering Research & Consultation, 10 Dahlia Lane, Redding, CT 06896, USA

ABSTRACT

A flow pattern based general correlation for heat transfer during condensation inside horizontal plain tubes is presented. It is compared to a data base that contains 89 data sets from 39 studies. It includes 25 fluids (water, carbon dioxide, DME, halocarbon refrigerants, and hydrocarbon refrigerants), tube diameters from 2 to 49 mm, reduced pressures from 0.0023 to 0.95, flow rates from 13 to 820 kg/m²s, and all liquid Reynolds numbers from 1012 to 84827. The 1568 data points are predicted with a mean absolute deviation of 16.7 %, with flow patterns determined with well-known flow pattern maps. The same data base is also compared to the author's published correlation which is purely empirical as well as several other general correlations. The present correlation performs significantly better than other correlations though the author's published correlation. The results of data analyses are discussed and presented in graphical and tabular forms.

KEY WORDS: Condensation, Two-phase/Multiphase flow, heat transfer, tubes, correlation

1. INTRODUCTION

Prediction of heat transfer during condensation of vapours flowing inside plain tubes is of great importance as many heat exchangers involve this mode of heat transfer, for example condensers for air conditioning and refrigeration systems. To ensure optimum design, accurate correlations for prediction of heat transfer are needed. Many correlations, theoretical and empirical, have been published for heat transfer during condensation inside plain tubes. One of the most widely used has been the author's correlation [1]. That correlation is limited to higher flow rates where heat flux has no effect. Shah [2] modified it to extend it to low flow rates and pressures close to the critical. This correlation has three heat transfer regimes. The boundary between Regime II and III for horizontal tubes for this correlation was not given in [2]; it was provided in Shah [3]. This correlation was shown to agree with an extremely wide range of data for horizontal and vertical tubes. It has three heat transfer regimes which are entirely empirical. As noted by many researchers, for example Liebenberg and Meyer [4], correlations that take into consideration flow patterns are preferable. One benefit of having the correlation in terms of flow patterns is that it opens the possibility of considering its application to channels of other geometries such as rectangular and triangular by using flow pattern maps for those geometries. In the present paper, the heat transfer regimes for horizontal round tubes in this correlation have been replaced by flow pattern regimes so as to give it a physical basis. Thus a flow pattern based general correlation is presented for horizontal tubes. It is shown to give good agreement with a very wide range of test data from 89 data sets from 39 independent studies. The entire data base is also compared with the Shah [2, 3] correlation as well as a number of other well-known correlations.

In the following, the development of the correlation is described and its validation with a very wide range of test data is presented. The results of comparison with several other general correlations are also presented.

*Corresponding Author: mshah.erc@gmail.com

2. THE PUBLISHED SHAH CORRELATION

The flow pattern based correlation presented here is a modification of the published Shah correlation [2, 3]. Hence the published correlation is first given. This correlation has three heat transfer regimes. The boundaries of these regimes are different for horizontal and vertical tubes. The heat transfer equations are the same for all orientations. This paper is concerned only with horizontal tubes.

2.1 Heat Transfer Equations

The correlation uses the following two heat transfer equations:

$$h_{I} = h_{LS} \left(1 + \frac{3.8}{Z^{0.95}} \right) \left(\frac{\mu_{l}}{14\mu_{g}} \right)^{(0.0058 + 0.557p_{r})}$$
(1)

$$h_{Nu} = 1.32 \operatorname{Re}_{LS}^{-1/3} \left[\frac{\rho_l (\rho_l - \rho_g) g k_l^3}{\mu_l^2} \right]^{1/3}$$
(2)

Eq. (1) is the same as that in the Shah [1] correlation except that it did not have the viscosity ratio factor. Eq. (2) is the Nusselt equation for laminar film condensation in vertical tubes; the constant has been increased by 20% as recommended by McAdams [5] on the basis of comparison with test data. This equation can also be expressed in terms of heat flux or temperature difference instead of Reynolds number. This form has been preferred as it is more convenient for this correlation and often it is also more convenient for design calculations. These equations are used according to the heat transfer regime as below:

In Regime I,

$$h_{TP} = h_I \tag{3}$$

In Regime II,

$$h_{TP} = h_I + h_{Nu} \tag{4}$$

In Regime III:

$$h_{TP} = h_{Nu} \tag{5}$$

 h_{LS} in Eq. (1) is the heat transfer coefficient of the liquid phase flowing alone in the tube. It is calculated by the following equation:

$$h_{LS} = 0.023 \,\mathrm{Re}_{LS}^{0.8} \,\mathrm{Pr}_l^{0.4} \,k_l \,/\, D \tag{6}$$

Z is the correlating parameter introduced by Shah [1] defined as:

$$Z = (1/x - 1)^{0.8} p_r^{0.4}$$
⁽⁷⁾

2.2 Heat Transfer Regimes for Horizontal Tubes

The boundaries between were determined by data analysis described in Shah [2, 3]. Regime I occurs when:

$$J_g \ge 0.98(Z+0.263)^{-0.62} \tag{8}$$

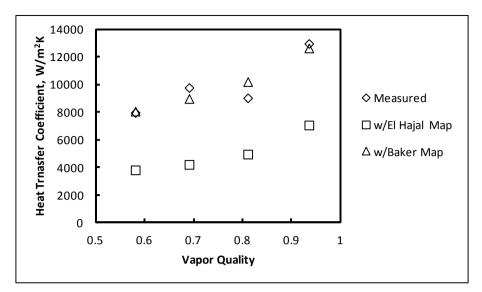
Regime III occurs when:

$$J_g \le 0.95(1.254 + 2.27Z^{1.249})^{-1} \tag{9}$$

If neither of the above conditions are satisfied, it is Regime II.

J_g is the dimensionless vapor velocity defined as:

$$J_g = \frac{xG}{\left(gD\rho_g(\rho_l - \rho_g)\right)^{0.5}} \tag{10}$$


3. DEVELOPMENT OF THE FLOW PATTERN BASED CORRELATION

A number of flow pattern maps/correlations have been proposed specifically for condensation inside horizontal tubes, for example those by Breber et al. [6], Tandon et al. [7], and El Hajal et al. [8]. The El Hajal et al. map has been validated by using it in comparing the flow pattern based heat transfer correlation of Thome et al. [9] with a condensation heat transfer database that included many refrigerants and hydrocarbons over a very wide range of parameters. It was therefore the first choice. This correlation has five flow patterns, namely stratified, stratified wavy, intermittent, annular, and mist. Flow patterns predicted by this correlation were compared with the heat transfer regimes predicted by the Shah correlation as well as the deviations of the heat transfer coefficients predicted by it. For fluids other than water, it was found that for the vast majority of data:

- Heat transfer Regime I corresponded to the intermittent, annular, and mist flow patterns.
- Heat transfer Regime II corresponded to stratified-wavy flow pattern.
- Heat transfer Regime III corresponded to stratified flow pattern.

For the data of Varma [10] for water, the El Hajal et al. map predicted stratified flow pattern which according to the results with the other fluids will place it in Regime III and thus Eq. (5) should apply. However, the data showed agreement with Eq. (4) which corresponds to Regime II for which the data for other fluids indicate the stratified-wavy flow pattern. The El Hajal et al. map had not been compared to water data. Further, its recommended range of tube diameter is < 21.4 mm while the Varma data are for D = 49 mm, and the minimum recommended reduced pressure is 0.02 while the Varma data are at a reduced pressure of 0.0023. In view of these limitations, it was felt that the El Hajal map's predictions may be incorrect for these data. The Baker [11] map is known to work well with air-water mixtures near atmospheric pressures as well as with many other gas-liquid mixtures and it was based on data for pipes of diameters from 25 to 100 mm. While it was based on adiabatic data, it has also been known to work fairly well for non-adiabatic situations. For example, Shah [12] found it to be in fair agreement with his visual observation on an ammonia evaporator with 25.4 mm diameter tube. It was therefore felt that it may be applicable to the Varma data. The Baker map predicted stratified-wavy flow pattern and use of Eq. (4) resulted in excellent agreement with the Varma data as seen in Fig. 1.

The Breber et al. map was verified with data that included water but this map does not distinguish between stratified and stratified-wavy regimes and hence is not useful for the present correlation. The Tandon et al. [7] map was verified only with refrigerant data. A possible choice for water at higher pressures may be the map of Taitel and Dukler [13] as it was derived analytically. However, that analytical derivation was for adiabatic condition.

Fig. 1 Predictions of the present correlation using the flow pattern maps of El Hajal et al. and Baker. Data of Varma [10] for water. $T_{SAT} = 82$ °C, $p_r = 0.0023$, $\dot{m} = 12.6$ kg/m²s.

4. NEW FLOW PATTERN BASED CORRELATION

Based on the results of the above described data analysis, the following flow pattern based correlation is proposed:

If flow pattern is intermittent, annular, or mist:

$$h_{TP} = h_I \tag{11}$$

If flow pattern is stratified-wavy:

$$h_{TP} = h_I + h_{Nu} \tag{12}$$

If flow pattern is stratified:

$$h_{TP} = h_{Nu} \tag{13}$$

To determine flow patterns, it is recommended to use the Baker map for low pressure water and the El Hajal et al. map for other fluids. Applicability of other flow pattern maps is unknown.

5. COMPARISON WITH TEST DATA

5.1 Data Search and Collection

A wide ranging database was available from the author's earlier researches, Shah [2, 3]. Recent literature was searched to obtain data for wider range of parameters and for fluids not included in that database. This resulted in procurement of data for butane, R-236ea, R-1234yf, and R-1234ze. The new database thus contains 25 fluids. The complete range of data analyzed is listed in Tables 1 and 2. Data for different fluids or of different diameters were considered separate data sets even if they are from the same source. For refrigerants, only oil-free data was considered as oil can have profound effect on heat transfer. Further, data for mixtures with glide more than 1 degree C were not included as heat transfer of mixtures with large glide is reduced due to mass transfer effects.

Fluids	Water, R-11, R-12, R-22, R-32, R-113, R-123, R-125,
	R-134a, R-142b, R-236ea, R-404A, R-410A, R-502, R-
	507, R1234ze, R-1234yf, benzene, butane, isobutane,
	propylene, propane, benzene, DME, CO ₂
Tube dia., mm	2 to 49
Reduced pressure	0.002 to 0.946
m, kg/m ² s	13 to 820
Re _{LT}	1012 to 84827
Re _{GT}	15892 to 599510
x	0.01 to 0.99
Number of data points	1528
Number of data sources	38
Number of data sets	88

 Table 1
 Complete range of parameters in the data analyzed.

Data for tubes of diameters smaller than 2 mm were excluded from consideration as these are generally regarded as mini/micro channels and their heat transfer behavior is considered to be different from that of larger tubes.

5.2 Correlations Tested

To put the performance of the new correlation into perspective, it is desirable that other leading correlations be also tested along with it. Only a few correlations are available which have been verified with data covering the entire range from very low flow rates to very high flow rates. Perhaps the most verified among these is that of Cavallini et al. [14]. This correlation has two heat transfer regimes called the heat flux independent and the heat flux dependent regimes and there are different formulas for the two regimes. To analyze the data in the heat flux dependent regime with this correlation, heat flux must be known. Most of the data sets analyzed do not report heat flux. Hence only the data in their heat flux independent regime can be compared to the Cavallini et al. correlation. Similar is the situation with the other correlations which have been demonstrated applicable to extreme range of data such as that of Dobson and Chato [15] and Thome et al. [9].

Many other correlations have been proposed which have had considerable verification and their authors have not given any limits for their applicability. Among such correlations are those Akers et al. [16], Ananiev et al. [17], and Moser et al. [18]. These correlations and the correlation of Shah [2, 3] and the new flow pattern based correlation were compared to the entire database.

5.3 Calculation Method

The entire database was compared to all correlations except the Cavallini et al. correlation which was compared only to those data which were in its heat flux independent regime. A run was also made in which all correlations were compared only with those data which were in heat flux independent regime of Cavallini et al. Flow patterns were determined using the Baker map for water and the El Hajal et al. map for all other fluids. Fluid properties were calculated with REFPROP 9.1 [19]. Single phase heat transfer coefficient for the present and Shah correlations was calculated by Eq. (6) for all data except those of Son & Lee [20] for which the following equation was used:

$$h_{LS} = 0.034 \operatorname{Re}_{LS}^{0.8} \operatorname{Pr}_{l}^{0.3} k_{l} / D$$
(14)

The reason is that these authors' single-phase measurements were higher than Eq. (6) and they fitted Eq. (14) to their data.

The results of calculations are given in Tables 2 and 3.

Source	Dia.,	Fluid	p _r	ṁ	х	Re _{LT}	Re _{GT}	No.	Deviation	, Percent
	mm		1.	Kg/m ² s		21	01	of		bsolute
				0				Data		rage
									Shah [3]	Present
Wilson et al.	3.72**	R-410A	0.435	75	0.80	2698	19322	12	10.7	13.7
[26]				400	0.10	14390	103052		7.8	10.7
		R-134a	0.218	75	0.79	1619	23010	13	14.7	17.0
				400	0.10	8635	122718		-0.1	2.2
Zilly [27]	6.1	CO2	0.227	200	0.80	8046	95529	16	28.7	28.7
J L 3			0.309	400	0.10	18973	191058	-	28.7	28.7
		R-22	0.049	400	0.78	9031	206932	7	15.1	15.1
		R 22	0.017	100	0.20	12575	231699	,	15.1	15.1
Shao et al.	9.4	R-134a	0.249	100	0.80	5811	76018	20	6.4	9.5
[28]	<i></i>	it is iu	0.219	400	0.10	23245	304071	20	-3.0	-2.8
Iqbal &	6.52	CO2	0.309	50	0.98	2535	24216	83	27.6	24.2
Bansal [29]	0.02	002	0.470	200	0.02	13085	96862	00	5.1	-5.7
Kondou &	6.1	CO2	0.810	100	0.98	9687	32472	31	13.5	13.6
Hrnjak [30]			0.946	200	0.10	19374	64945		-9.1	-12.1
Afroz &	4.35	DME	0.127	200	0.97	7081	91698	29	12.5	11.8
Miyara [25]				500	0.02	17703	229244		-11.4	-10.5
Wen, Ho, &	2.46	Butane	0.099	205	0.84	3661	64805	18	15.1	15.1
Hsieh [31]		(R-600)		510	0.12	9107	161202		-14.4	-14.4
		R-134a	0.249	205	0.84	3118	40783	18	9.9	11.9
				510	0.12	7556	101459		2.6	4.6
		Propane	0.321	205	0.80	6077	56760	18	10.8	10.8
		1		510	0.13	15119	141207		-8.5	-8.5
Dalkilic &	4.0	Isobutane	0.127	57	0.90	1671	29362	17	7.9	17.9
Agra [32]				92	0.05	2698	47392		-6.3	17.9
Son & Lee	5.35	R-134a	0.249	400	0.88	13230	173062	5	12.0	12.0
[33]					0.08				11.9	11.9
		R-22	0.306	300	0.88	11554	120231	6	4.0	4.3
					0.12				0.8	3.4
	3.36	R-134a	0.249	200	0.90	4154	54345	15	8.4	9.3
			0.006	400	0.10	8309	108689	10	-5.3	-1.0
		R-22	0.306	200	0.88	7256	75510	12	9.6	9.6
L C	5.0	Davasa	0.221	400 49	0.09	9675	100679	12	-1.2	-1.2
Lee & Son	5.8	Propane	0.321	49 170	$0.85 \\ 0.05$	3443 11882	32248 110976	13	19.3 -19.3	24.4 -24.3
[34]	6.54	Propane	0.321	56	0.03	4445	41515	12	9.1	-24.5
	0.54	Fiopalle	0.521	133	0.85	10482	97900	12	9.1 1.2	-1.2
	7.73	Propane	0.321	62	0.83	5813	54289	12	16.4	24.5
	1.15	riopane	0.321	100	0.85	9336	87002	12	1.4	7.3
	10.07	Propane	0.321	47	0.80	5704	53270	9	20.1	28.5
	10.07	1 opuno	0.021	.,	0.05	2701	22270	Í	20.1	6.7
	5.8	Isobutane	0.146	49	085	2211	36231	13	25.0	22.2
	2.0			170	0.05	7609	124681		-25.0	-20.3
	6.54	Iso-butane	0.146	52	0.85	2609	42756	12	17.4	9.8
				152	0.05	7671	125703		-17.4	-8.7
	7.73	Iso-butane	0.146	51	0.86	3054	50046	10	16.7	16.8
					0.06				3.7	6.6
	10.07	Isobutane	0.146	49	0.87	3889	62904	12	12.0	19.7
				115	0.05	8936	146437		10.0	1.5

Table 2 Salient features of data for horizontal tubes and results of comparison with the Shah Correlation [3]and present correlation using flow patterns as criteria.

							1			
	5.8	R-134a	0.146	42	0.86	1510	19747	10	42.0	42.0
					0.06				-42.0	-42.0
	6.54	R-134a	0.249	74	0.85	2106	39138	12	15.7	28.0
	7 70	D 104	0.040	160	0.05	6449	84622	11	12.2	-0.3
	7.73	R-134a	0.249	52	0.80	2509	32819	11	29.0	26.3
	10.07	D 104	0.040	165	0.05	7885	103146	10	16.6	11.7
	10.07	R-134a	0.249	52	0.84	3268	42754	10	20.7	38.8
	5.0	D 22	0.206	112	0.05	6972	91281	11	-8.6	35.2
	5.8	R-22	0.306	50	0.85	2100	21854	11	14.6	26.6
				152	0.06	6346	66041		12.9	-0.8
	6.54	R-22	0.306	56	0.85	2636	27435	12	42.8	34.5
				210	0.06	9886	102882		42.7	28.6
	7.73	R-22	0.306	52	0.89	2921	30400	12	14.8	31.9
				190	0.05	10572	110021		-14.8	14.2
	10.07	R-22	0.306	50	0.85	3632	37793	11	19.1	37.8
				150	0.06	10872	113152		7.1	37.0
Hossain et	0.306	R-32	0.427	300	0.90	13713	94445	7	24.6	24.6
al.[35]					0.08				-24.6	-24.6
	0.306	R-1234ze	0.210	191	0.96	4966	64295	29	27.0	24.4
				375	0.10	9750	126233		-27.0	-24.4
Varma [10]	49.0	water	0.002	12.6	0.95	1808	54415	4	31.1	6.2
					0.58				-24.6	0.9
Tang et al.	8.8	R-134a	0.25	260	0.81	11573	181808	24	12.2	13.3
[36]				820	0.09	36500	573395		7.4	9.7
		R-410A	0.495	320	0.81	29822	191929	16	11.6	11.6
				720	0.09	73624	473824		8.8	8.8
		R-22	0.308	270	0.91	11591	165849	28	5.7	5.3
	10.7			790	0.09	33914	485263		-0.4	0.1
Bae et al. [37]	12.5	R-22	0.235	210	0.90	12579	193612	27	16.4	16.0
D 1 [20]		D 12	0.325	634	0.09	38430	569436	20	4.0	4.4
Bae et al. [38]		R-12	0.197	344	0.91	17721	327303	29	14.2	13.8
			0.211	634	0.03	32932	599510		-7.9	-7.5
Powell [39]	12.8	R-11	0.035	258	0.24	8689	283628	1	2.0	2.0
									2.0	2.0
Lambrecht et	8.1	R-22	0.308	300	0.5	11854	169619	6	31.1	31.1
al. [40]				800		31611	452317		31.1	31.1
Jung et al.	8.0	R-32	0.428	100		8430	55402	17	13.2	12.6
[41]	0.0	102	01.20	300		25290	166205	- /	1.1	2.2
[]		R-12	0.127	100	0.93	4253	63431	14	12.3	12.1
		_		300	0.10	12759	190294		1.2	2.4
		R-125	0.559	100	0.90	7306	42781	13	8.3	8.3
				300	0.15	21918	128342		-8.3	-8.3
		R-123	0.042	100	0.90	2675	70573	15	12.1	15.1
				300	0.15	8024	211720		6.4	12.3
		R-142b	0.128	100	0.92	4073	72727	17	9.4	9.7
				300	0.2	12220	218182		-1.4	6.7
Infante-	8.0	R-404A	0.491	250	0.88	19605	150036	16	13.5	13.5
Ferreira et al. [42]				600	0.14	47053	360086		-10.3	-10.3
Park et al.	8.8	Propy-	0.354	100	0.91	10784	90072	28	32.5	37.9
[43]	0.0	lene	0.554	300	0.91	32355	270215	20	32.5 32.5	37.9
נידן		Isobutane	0.146	100	0.10	6882	110913	21	10.8	16.4
		isobutane	0.140	300	0.89	20646	332739	21	9.6	15.9
		Propane	0.322	100	0.88	10643	93739	27	18.8	22.2
		riopane	0.322	300	0.88	31930	281217	21	18.8	22.2
				500	0.1	51750	201217		10.0	
l	1	1	1		1	1	1	1	1	1

		R-22	0.308	100	0.90	4293	61426	27	7.6	10.8
		IX 22	0.500	300	0.10	12879	184277	21	1.6	2.1
Jiang &	9.4	R-404A	0.805	200	0.88	28415	96507	40	8.7	9.2
Garimella	2.1	It form	0.907	500	0.20	84827	275264	10	-4.1	-4.5
[44]										
Lee et al. [45]	10.9	Propylene	0.354	150	0.88	20074	167656	10	17.2	15.3
					0.01				-17.2	-14.1
		Isobutane	0.146	150	0.88	12810	206450	10	14.1	11.6
					0.01				-14.1	-11.6
		Propane	0.32	150	0.90	19811	174483	10	13.5	12.5
				1.50	0.01			10	-13.5	-12.1
		R-22	0.308	150	0.91	7991	114336	10	18.0	22.6
Jung et al.	8.8	R-134a	0.250	100	0.01	4461	70085	27	-18.0 10.6	-22.6 9.2
[46]	0.0	K-154a	0.230	300	0.98	13384	210255	27	-7.7	9.2 -4.5
[+0]		R-410A	0.495	100	0.94	9341	60114	27	9.3	8.1
		It Holt	0.175	300	0.03	28022	180342	27	-9.3	-6.0
		R-22	0.308	100	0.96	4303	61565	26	15.5	13.6
				300	0.08	12908	184696		-12.7	-8.7
Eckels &	8.0	R-507	0.505	251	0.80	19844	147434	23	14.3	15.2
Tesene [47]				599	0.10	47455	352565		5.4	6.3
		R-502	0.411	600	0.75	38989	342547	8	21.4	21.4
					0.13				21.4	21.4
Eckels et al.	8.0	R-12	0.233	134	0.47*	4560	79488	5	12.8	16.1
[48]	0.0	D 101	0.015	374	0.43	12726	221742	_	12.1	16.1
	8.0	R-134a	0.245	87 269	0.50^{*}	3511	55531	7	8.6	8.6
	11.0	R-134a	0.249	368 84	0.51*	14851 5712	234889 74724	5	8.5 4.	8.5 7.6
	11.0	K-154a	0.249	84 280	0.31	19041	249080	5	4. 1.5	5.3
Nan &	8.8	Propane	0.286	150	0.59	15132	144510	6	9.6	11.9
Infante-	0.0	Tiopune	0.200	250	0.10	25220	240849	0	-8.1	-4.8
Fereira [49]							,			
Dobson &	7.0	R-410A	0.438	75	0.90	5172	37258	18	11.7	13.0
Chato [15]				650	0.09	44827	322900		-10.2	-11.5
		R-22	0.272	75	0.90	2558	37768	18	11.0	13.2
				650	0.16	22171	327323		-8.5	-10.6
		R-134a	0.219	75	0.9	2622	42961	19	12.5	12.5
XX /: 0		D 22	0.070	650	0.09	22725	372331	10	-11.5	-11.5
Wijaya &	7.7	R-22	0.272	481	0.80	18138	245041	18	7.7	7.7
Spatz [50]		R-410A	0.405 0.573	495 481	0.21 0.79	18587 43405	274408 231147	13	-4.6 14.0	-4.6 14.0
		K-410A	0.652	401	0.79	47297	242447	15	-14.0	-14.0
Shao &	6.0	R-134a	0.189	183	0.92	6030	92064	10	15.3	20.4
Granyrd [51]	0.0	1. 10 10	0.10)	269	0.10	8797	135629	10	10.1	17.8
Cavallini et	8.0	R-134a	0.250	65	0.80	2630	41320	37	8.3	9.3
al. [52]				750	0.28	30349	476769		-2.0	-2.0
		R-410A	0.495	750	0.75	63542	408939	7	20.9	20.9
					0.20				20.9	20.9
		R-125	0.559	100	0.80	7306	42781	23	10.7	10.6
				750	0.23	54795	320856		0.2	1.1
		R-32	0.429	100	0.80	8430	55402	24	11.1	10.4
		D 22	0.200	600	0.24	50580	332410	21	6.8	8.6
		R-22	0.308	100 750	0.85	3903	55842	31	9.8 2.4	8.7
		R236ea	0.098	750 100	0.20	29270 2554	418812 70555	28	-3.4 12.3	-2.2 5.4
		K230ea	0.098	650	.20	2554 15323	423333	20	-12.5	-4.2
				0.00	.20	15525	423333		-12.1	-4.2

1	· · · · · ·									
Altman et al.	8.7	R-22	0.268	300	0.92	12725	184687	15	8.4	6.4
[53]			0.441	618	0.23	26166	379779		-7.4	-5.3
Azer et al.	12.7	R-12	0.219	210	0.99	115362	195269	39	29.2	31.4
[54]			0.296	446	0.35	4690	411239		22.3	26.7
Chitti &	8.0	R-22	0.272	149	0.75	5793	84608	12	13.4	10.3
Anand [55]			0.356	437	0.20	17124	236958		-12.2	-9.1
Berrada et al.	8.9	R-134a	0.278	170	0.79	7765	117866	14	23.7	32.4
[56]				214	0.25	9774	148373		23.7	32.4
		R-22	0.312	114	0.80	4963	70769	12	11.9	14.9
				214	0.12	9317	132846		5.8	9.2
Jassim et al.	8.9	R-134a	0.164	100	0.94	75125	75125	25	20.0	18.0
[57]				300	0.04	12663	225375		-20.0	-18.0
Akers et al.	15.7	R-12	0.662	78	0.94*	6786	67301	33	24.4	20.4
[16]				418	0.63	36356	360575		20.9	20.4
		Propane	0.657	13	0.83*	3899	17473	15	16.9	18.2
				162	0.51	48103	215578		6.9	12.8
Tepe &	18.5	Benzene	0.021	54	0.57^{*}	3264	106965	6	10.2	5.7
Mueller [58]				82	0.51	4991	163546		-2.8	5.7
Yan and Lin	2.0	R-134a	0.16	100	0.94	1012	15892	31	14.3	19.3
[59]			0.32	200.	0.10	2076	33764		-3.2	19.0
Wang et al.	4.0	R-1234yf	0.12	101	0.300	3163	32141	40	31.3	21.5
[60]			0.92	401	0.384	14023	13916		-31.3	-21.4
All data	2.0		0.002	13	0.98	1012	15892	1568	16.1	16.7
	49.0		0.946	820	0.01	84827	599510		-0.9	1.2

*Mean quality for the tube length **Hydraulic equivalent diameter of flattened tube

Correlation	Deviation, Percent					
	Mean	Absolute				
	Av	verage				
	Heat Flux	All Data				
	Independent Regime*	(1568 data points)				
	(675 data points)					
Ananiev et al. [17]	19.5	27.0				
	-16.2	-24.8				
Moser et al. [18]	19.4	22.8				
	8.9	3.4				
Cavallini et al. [14]	15.0	Not applied to heat flux				
	-8.5	dependent regime data				
Akers et al. [16]	37.8	43.3				
	-37.6	-43.2				
Shah [3]	14.1	16.1				
	0.4	-0.9				
Present	14.2	16.7				
	2.4	1.2				

Table 3 Results of data analysis for all test	ted correlations
---	------------------

(2006)mg g

Mean absolute deviation is defined as:

$$\delta_m = \frac{1}{N} \sum_{1}^{N} ABS \left((h_{predicted} - h_{measured}) / h_{measured} \right)$$
(15)

Average deviation is defined as:

$$\delta_{avg} = \frac{1}{N} \sum_{1}^{N} \left((h_{predicted} - h_{measured}) / h_{measured} \right)$$
(16)

6. DISCUSSION OF RESULTS

Detailed results of data analysis for the present correlation and the Shah [3] correlation are listed in Table 2. The present correlation has a mean absolute deviation of 16.7 % while the Shah correlation has a mean absolute deviation of 16.1 %. Of the 89 data sets analyzed, 21 show better agreement with the present correlation while 25 show better agreement with the Shah correlation, the mean deviations of the remaining 43 being unchanged. If more data sets are analyzed, the balance may well change. Thus the accuracy of the present flow pattern based correlation is perhaps a little less than that of the Shah correlation which uses heat transfer regimes without any physical meaning. This small loss of accuracy may be acceptable in exchange for the physical clarity.

Table 3 lists the results for all correlations and Figs. 2 to 6 show some of the results in graphical form. Considering all data, it is seen that all correlations have considerably larger deviations than the present and the Shah correlations. The next best is the correlation of Moser et al. with 22.8 % deviation. Considering only those data which are in the heat flux independent regime of Cavallini et al. [14] correlation, the deviations of the present and the Shah correlation are almost equal at 14.2 and 14.1 % respectively. The performance of the Cavallini et al. correlation is also good with a mean deviation of 15.0 %. Notably poor is the performance of the Akers et al. [16] correlation with a mean deviation of 43.3 % and average deviation of -43.2 %. The other correlations give fairly good performance. Figs. 2 to 6 show comparison of data with the present and other correlations.

As seen in Table 2, agreement of the present correlation with near azeotropic mixtures R-410A and R-404A is good. Heat transfer of fluids with large glides is considerably diminished due to effects of sensible heat transfer and mass transfer as the mixture composition and the temperature of components changes along the tube. Shah et al. [21] analyzed an extensive database of mixtures with glides upto 35 ^oC. They found that the Shah [2] correlation gave good agreement when used with the correction factors given by Bell and Ghaly [22] and McNaught [23]. Good agreement is also expected with the present correlation in the same way as the El Hajal et al. map was also verified with data for mixtures.

Data for tubes with diameters smaller than 2 mm were not included in the present data analysis. Shah [24] had compared a large database for mini-channels with his correlation [2] and found that many of those data sets were in good agreement while others showed large deviations. That correlation does not consider flow patterns. It will be interesting to compare those data with the present correlation using flow pattern maps applicable to mini-channels. It will also be interesting to compare this correlation to data for non-circular channels using flow pattern maps applicable to them.

In evaluating the results of this data analysis, knowing the accuracy of the test data could be helpful in understanding the deviations from the correlation. Most authors have given only the accuracy of the test instruments used and it is always 2 % or better. A few have done the error propagation analysis to determine the uncertainty in heat transfer coefficients; the reported uncertainties are in the range of 2.3 to 9.5 percent except that Lambrecht et al. [40] estimate it as upto 14.7 %; their data show mean deviation of 31 % which suggests that it may be due to data inaccuracy. Some researchers tested several fluids on the same test rig, for example Park et al. [43]. The deviations of their data for two fluids are low but are high for propylene. Data of Lee et al. [45] for propylene at comparable conditions show good agreement. Thus researchers' own estimates of uncertainty of data are not always helpful. Using data from many sources is probably the best way to identify doubtful data.

The correlation is recommended in the verified range of p_r . Therefore for water it is recommended only at p_r near 0.002 as the data analyzed are only at this pressure and because properties of water differ significantly from other fluids. For other fluids, the verified range of p_r is 0.02 to 0.95. Further, it is recommended only in the verified range of Re_{LT} (1,012 to 84,827) and Re_{GT} (15,892 to 599,510).

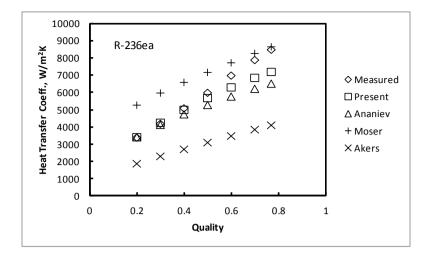
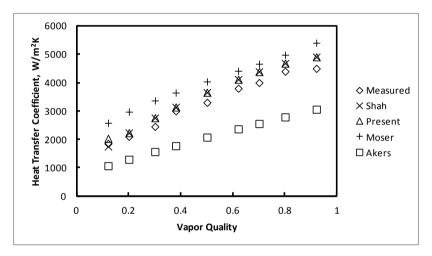
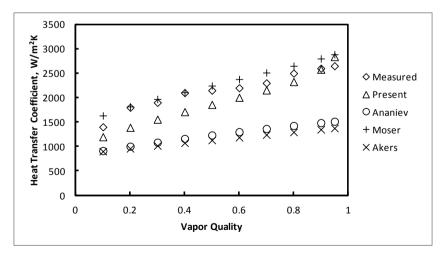




Fig. 2 Comparison of test data of Cavallini et al. [52] with various correlations. $T_{SAT} = 40$ °C, $\dot{m} = 600$ kg/m²s.

Fig. 3 Comparison of the data of Jung et al. [41] for R-142b with various correlations. $T_{SAT} = 40$ °C, $\dot{m} = 300 \text{ kg/m}^2\text{s}$.

Fig. 4 Comparison of various correlations with the data of Kondou & Hrnjak [30] for CO₂, $\dot{m} = 100 \text{ kg/m}^2\text{s}$, $p_r = 0.81$.

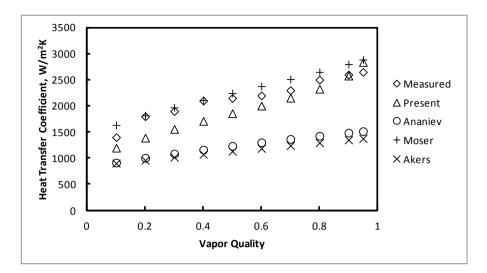
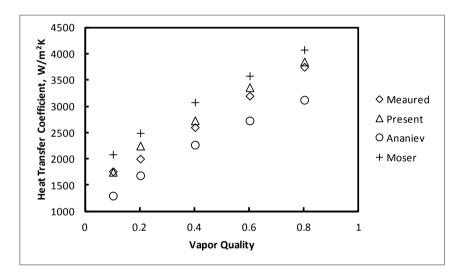



Fig. 5 Comparison of various correlations with the data of Lee & Son [34] for propane. D = 6.54 mm, $T_{SAT} = 40 \text{ }^{\circ}\text{C}$, $\dot{m} = 56 \text{ kg/m}^2\text{s}$.

Fig. 6 Comparison of various correlations with the data of Shao et al. [28] for R-134a. $\dot{m} = 300 \text{ kg/m}^2 \text{s. } T_{\text{SAT}} = 40 \text{ }^{\circ}\text{C.}$

7. CONCLUSION

- 1. A flow pattern based correlation for heat transfer during condensation inside plain tubes has been presented which shows good agreement with data for 25 fluids over an extreme range of parameters including tube diameters from 2 to 49 mm, reduced pressures from 0.002 to 0.94, and mass flow rates from 13 to 820 kg/m²s.
- 2. A number of other general correlations were also compared to the same data base. The accuracy of the new flow pattern based is slightly lower than that of the Shah [3] correlation but it is more clearly related to the physical phenomena involved. Its accuracy compares favorably with other correlations.

- 3. For water, there were only a few data points at low pressure and all from one source. While use of the Baker map resulted in good agreement with data, analysis of water data at higher pressures and more varied conditions is needed.
- 4. Based on the results of data analysis in Table 2, the present correlation is recommended for pure fluids other than water in the following range: $p_r = 0.02$ to 0.095, $Re_{LT} = 1,012$ to 84,827, $Re_{GT} = 15,800$ to 599,510. For water, application should be further restricted to p_r near 0.002 till verification with higher and lower pressure data is done.
- 5. The present correlation is likely to be applicable to mixtures when used with the correction factors of Bell and Ghaly [22] and McNaught [23].

NOMENCLATURE

D	Inside diameter of tube	(m)
ṁ	Total mass flux (liquid + vapor)	(kg/m^2s)
g	Acceleration due to gravity	(m/s^2)
h	Heat transfer coefficient	(W/m^2K)
hI	Heat transfer coefficient given by Eq. (1)	(W/m^2K)
h _{LS}	Heat transfer coefficient assuming liquid phase flowing alone in the tube	(W/m^2K)
h_{LT}	Heat transfer coefficient assuming all mass flowing as liquid	(W/m^2K)
h_{Nu}	Heat transfer coefficient given by Eq. (2), the Nusselt relation	(W/m^2K)
h_{TP}	Two-phase heat transfer coefficient	(W/m^2K)
J_g	Dimensionless vapor velocity defined by Eq. (10)	(-)
Ν	Number of data points	(-)
$\mathbf{p}_{\mathbf{r}}$	Reduced pressure	(-)
Re _{GT}	Reynolds number assuming total mass flowing as vapor, $= \dot{m}D/\mu_g$	(-)
Re _{LS}	Reynolds number assuming liquid phase flowing alone, = $\dot{m}(1-x)D/\mu_1$	(-)
Re_{LT}	Reynolds number assuming total mass flowing as liquid, = $\dot{m}D/\mu_l$	(-)
T_{SAT}	Saturation temperature	(C)
Х	Vapor quality	(-)
Ζ	Shah's correlating parameter, defined by Eq. (7)	(-)

REFERENCES

- [1] Shah, M.M., "A general correlation for heat transfer during film condensation in pipes," *Int. J. Heat Mass Transfer*, 22, pp. 547-556, (1979).
- [2] Shah, M. M.," An improved and extended general correlation for heat transfer during condensation in plain tubes," *HVAC&R Research*," 15(5), pp. 889-913, (2009).
- [3] Shah, M. M., "General correlation for heat transfer during condensation in plain tubes: further development and verification," *ASHRAE Trans.* 119(2), pp. 3-11, (2013).
- [4] Liebenberg, L. and Meyer, J. P. ," A review of flow pattern based predictive correlations during refrigerant condensation in horizontally smooth and enhanced tubes," Heat Transfer Engineering," 29(1):3-18, (2008).
- [5] McAdams, W. H., Heat Transmission, New York: McGraw Hill, (1954).
- [6] Breber, G., Palen, J. W., J. Taborek, J.," Prediction of horizontal tubeside condensation of pure components using flow regime criteria," *J. Heat Transfer*, 102(3), pp. 471-476, (1980).
- [7] Tandon, T. N., Varma, H. K., Gupta, C. P., "A new flow regime map for condensation inside horizontal tubes," J. Heat Transfer, 104(4), pp. 763-768, (1982).
- [8] El Hajal, J., Thome, J. R., Cavallini, A., "Condensation in horizontal tubes, part I: two-phase flow pattern map," *Int. J. Heat Mass Trans.* 46, pp. 3349-3363, (2003).

- [9] Thome, J. R., J. El Hajal, A. Cavallini, "Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes," *Int. J. Heat Mass Transfer*, 46, pp. 3365-3387, (2003).
- [10] Varma, V. C., A study of condensation of steam inside a tube. Master of Science Thesis, Rutgers University, NJ, (1977).
- [11] Baker, O., "Design of pipelines for flow of oil and gas," *Oil Gas J.*, 53, pp.185-195, (1954).
- [12] Shah, M. M., "Visual observations in an ammonia evaporator," ASHRAE Trans., 82(1), (1975).
- [13] Taitel, Y. and Dukler, A. E., "A model for predicting flow regime transitions in horizontal and near-horizontal gas-liquid flow," *AIChE J.*, 22(1), pp. 47-55, (1976).
- [14] Cavallini, A., Col, D. D., Doretti, L., Matkovic, M., Rossetto, L., Zilio, C., "Condensation in horizontal smooth tubes : a new heat transfer model for heat exchanger design," *Heat Transfer Engineering*, 27(8), pp. 31-38, (2006).
- [15] Dobson, M. K. and J. C. Chato, "Condensation in smooth horizontal tubes," J. Heat Transfer, 120, pp. 193-213, (1998).
- [16] Akers, W. W., Deans, H. A., and Crosser, O. K. "Condensing heat transfer within horizontal tubes," *Chem. Eng. Prog. Symp. Ser.*, 59(29), pp. 171-176, (1959).
- [17] Ananiev, E. P., Boyko, I. D., and Kruzhilin, G. N., "Heat Transfer in the Presence of Steam Condensation In Horizontal Tubes," in S Yagi, D Kunii, and N Wakoo, eds. *Int. Developments in Heat Transfer*, part 2, New York, ASME, pp. 290-295, (1961).
- [18] Moser, K. W., Webb, R. L., Na, B., "A new equivalent Reynolds number model for condensation in smooth tubes," J. Heat Transfer," 120, pp. 410-416, (1998).
- [19] Lemmon, E. W., Huber, M. L., and McLinden, M. O., NIST Reference Fluid Thermodynamic and Transport Properties, REFPROP Version 9.1, NIST, Gaithersburg, MD. (2013)
- [20] Son, C. and Lee, H., "Condensation heat transfer characteristics of R-22, R-134a and R-410A in small diameter tubes," *Heat Mass Transfer*, 45, pp. 1153-1166, (2009).
- [21] Shah, M. M., Mahmoud, A. M., and Lee, J., "An assessment of some predictive methods for in-tube condensation heat transfer of refrigerant mixtures," ASHRAE Trans., 119(2), pp. 38-51, (2013).
- [22] Bell, K.J., and Ghaly. M. A., "An approximate generalized method for multicomponent partial condenser," *American Institute of Chemical Engineers Symposium Series*, 69, pp. 72–79, (1973).
- [23] McNaught, J. M., "Mass-Transfer Correction Term in Design Methods for Multicomponent/Partial Condensers," in eds. P. J.Marto and and P. G. Kroeger, *Condensation Heat Transfer*, New York, ASME, pp. 111-118, (1979).
- [24] Shah, M. M., "Heat Transfer During Condensation Inside Small Channels: Applicability of General Correlation for Macrochannels," *Proc. of 14th International Heat Transfer Conference,* IHTC14-22346, (2010)
- [25] Afroz, H.M M., Miyara, A. and K. Tsubaki, "Heat transfer coefficients and pressure drops during in-tube condensation of CO2/DME mixture refrigerant," Int. J. Refrigeration, 31, pp. 1458-1466, (2008).
- [26] Wilson, M. J., Newell, T. A., Chato, J. C., and Infante Ferreira, C. A., "Refrigerant charge, pressure drop, and condensation heat transfer in flattened tubes," *Int.J.Refrig.*, 26, pp. 443-451, (2003).
- [27] Zilly, J., Jang, J, Hrnjak, P., " Condensation of CO2 at low temperature inside horizontal micro-finned tube," ACRC Report CR-49, University of Illinois at Urbana Champaign, (2003)
- [28] Shao, L., Han, J., Su, G., and Pan, J., "Condensation heat transfer of R-134A in horizontal straight and helically coiled tube-intube heat exchangers," *Journal of Hydrodynamics, Ser. B*, pp. 677-682, (2007).
- [29] Iqbal, O., and Bansal, P. "In-tube condensation of CO₂ heat transfer in a horizontal smooth tube," *International J. Refrig.*, 35(2), pp. 270-277, (2012).
- [30] Kondou, C., and Hrnjak, P., "Heat rejection from R744 flow under uniform temperature cooling in a horizontal smooth tube around the critical point," *Int. J. Refrig.*, 34, pp. 719-731, (2011).
- [31] Wen, M., Ho, C., and Hsieh, J., "Condensation heat Transfer and pressure drop characteristics of R-290 (propane), R-600 (butane), and a mixture of R-290/R-600 in the serpentine small-tube bank," *Applied Thermal Engineering*, 26, pp. 2045-2053, (2006).
- [32] Dalkilic, A. S., and Agra, O., "Experimental Apparatus for the Determination of Condensation Heat Transfer Coefficients for R-134a and R-600a Flowing Inside Vertical and Horizontal Tubes Respectively," Proc. of the 2009 ASME Summer Heat Transfer Conference, San Francisco, California, USA, (2009).
- [33] Son, C. and Lee, H., "Condensation characteristics of R-22, R-134a, and R-410A in small diameter tubes," *Heat & Mass Transfer*, 45, pp. 1153-1166, (2009).
- [34] Lee, H., and Son, C., "Condensation heat transfer and pressure drop characteristics of R-290, R-600a, R-134a, and R-22 in horizontal tubes," *Heat Mass Transfer*, 46, pp. 571-584, (2010).
- [35] Hossain, M. A., Onaka, Y., and Miyara, A., "Experimental study on condensation heat transfer and pressure drop in horizontal plain tubes for R-1234ze(E), R-32, and R-410A," *Int. J. Refrigeration*, 35, pp. 927-938, (2012).
 [36] Tang, L., Ohadi, M. M. and Johnson, A. T., "Flow condensation in smooth and micro-fin tubes with HCFC-22, HFC-134a
- [36] Tang, L., Ohadi, M. M. and Johnson, A. T., "Flow condensation in smooth and micro-fin tubes with HCFC-22, HFC-134a and HFC-410A refrigerants," *Enhanced Heat Transfer*, 7, pp. 289-310, (2000).
- [37] Bae, J., Maulbetsch, L., and Rohsenow, W. M., "Refrigerant forced convection condensation inside horizontal tubes," M.I.T Report DSR-79760-64, (1969).
- [38] Bae, J., Maulbetsch, L., and Rohsenow, W. M., "Refrigerant forced convection condensation inside horizontal tubes," *M.I.T Report DSR-79760-59*, (1968).
- [39] Powell, C.K., Condensation Inside a Horizontal Tube with High Vapor Velocity. M.S. Thesis, Purdue University, (1961).
- [40] Lambrecht, A., Liebenberg, L., Bergles, A. E., and Meyer, J. P., "Heat transfer performance during condensation inside horizontal smooth, micro-fin, and herringbone tubes," J. Heat Transfer, 128(7), pp. 691-700, (2006).
- [41] Jung, D., Song, K., Cho, Y., and Kim, S., "Flow condensation of heat transfer coefficients of pure refrigerants," *Int. J. Refrigeration*, 26, pp. 4-11, (2003).

- [42] Infante-Ferreira, C. A., Newell, T. A., Chato, J. C., and X. Nan, X., "R404A condensing under forced flow conditions inside smooth, microfin and cross-hatched tubes," *Int. J. Refrigeration*, 26, pp. 433-441, (2002).
- [43] Park, K., Jung, D. and Seo, T., "Flow condensation heat transfer characteristics of hydrocarbon refrigerants and dimethyl ether inside a horizontal plain tube," *Int. J. Multiphase Flow*, 4, pp. 628-635, (2008).
- [44] Jiang, Y., and Garimella, S., "Heat transfer and pressure drop for condensation of R-404A at near critical pressure," *ASHRAE Trans.*, 109(1), pp. 677-688, (2003).
- [45] Lee, H., Yoon, J., Kim, J., and Bansal, P. K., "Condensing heat transfer and pressure drop characteristics of hydrocarbon refrigerants," *Int. J. Heat Mass Transfer*, 49, pp. 1922-1927, (2006).
- [46] Jung, D., Cho, Y., and Park, K., "Flow condensation heat transfer coefficients of R22, R134a, R407C, and R410A inside plain and microfin tubes," *Int. J. Refrigeration*, 27, pp. 25-32, (2004).
- [47] Eckels, S. J. and Tesene, B., "Forced convective condensation of refrigerants R-502 and R-507 in smooth and enhanced tubes," *ASHRAE Trans.*, 99, pp. 627-638, (1993).
- [48] Eckels, S, Doerr, T. M., and Pate, M. B., "Heat transfer and pressure drop during condensation and evaporation of R-134a/oil mixtures in smooth and micro-fin tubes." *Final Report ASHRAE RP-630*, (1993).
- [49] Nan, X. H. and Infante Ferreira, C. A., "In-Tube Evaporation and Condensation of Natural Refrigerant R 290 (Propane)," Preliminary Proceedings of the 4th IIR Gustav Lorentzen Conference on Natural Working Fluids, IIR Commission B1, B2, E1, E2, Purdue, (2000).
- [50] Wijaya, H. and Spatz, M. W., "Two-phase flow heat transfer and pressure drop characteristics of R-22 and R-32/R125," ASHRAE Trans., 101(1), pp. 1020-1027, (1995).
- [51] Shao, D. W. and Granryd, E., "Heat transfer and pressure drop of HFC134a-oil mixtures in horizontal condensing tube," *Int. J. Refrig.*, 18(8), pp. 524-533, (1995).
- [52] Cavallini, A., Censi, G., Col, D. D., Doretti, L., Longo, G. A., and Rossetto, L., "Experimental investigation on condensation heat transfer and pressure drop of new HFC refrigerants (R134a, R125, R32, R410A, R236ea) in a horizontal smooth tube," *Int. J. Refrig.*, 21, pp. 73-87, (2001).
- [53] Altman, M., Staub, F. W., and Norris, R. H., "Local heat transfer and pressure drop for Refrigerant 22 condensing in horizontal tubes," ASME-AIChE Conf., Storrs, CT., (1979).
- [54] Azer, N. Z., Abis, L. V., and Soliman, H. M., "Local heat transfer coefficients during annular flow condensation," ASHRAE Trans., 78, pp. 135-143, (1972).
- [55] Chitti, M.S. and Anand, N. K., "An analytical model for local heat transfer coefficients for forced convective condensation inside smooth horizontal tubes," *Int. J. Heat Mass Transfer*, 2, pp. 615-627, (1995).
- [56] Berrada, N., Marviller, C., Bontemps, A., and Daudi., S., "Heat transfer in tube condensation of a zeotropic mixture of R23/134a in a horizontal smooth tube," *Int. J. Refrig.*, 19(7), pp. 463–72, (1996).
- [57] Jassim, E. W., Newell, T. A., Chato, J. C., "Prediction of two-phase condensation in horizontal tubes using probabilistic flow regime maps," Int. J. Heat Mass Transfer, 51(3-4), pp. 485-496, (2008)
- [58] Tepe, J.B. and Mueller, A.C., "Condensation and subcooling inside an inclined tube," *Chem. Eng. Prog.*, 43, pp. 267-278, (1947).
- [59] Yan, Y. and Lin, T., "Condensation heat transfer and pressure drop of refrigerant R-134a in a small pipe," *Int. J. Heat Mass Transfer*, 42, pp. 697-708, (1999).
- [60] Wang, L., Dang, C., and Hihara, E.,"Experimental study on condensation heat transfer and pressure drop of low GWP refrigerant HFO 1234yf in a horizontal tube," *Int. J. Refrig.*, 35(5), pp. 1418-1429, (2013).